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Table 1. Correlation factors, R, between data sets 
corrected as described in text 

(iii) 
(i) (ii) Data 

Data sets Data Data Lp equation (16) 
A B uncorrected corrected corrected 
Cu Co 0-12 0"19 0.10 
Cu Cr 0"55 0"67 0.23 
Co Cr 0.45 0"60 0.16 

since the magnitude of the correction required increases 
sharply for reflections at higher angles, the improved 
agreement achieved in the present case is particularly 
striking in that all of the data used were at relatively 
low angle. 

It is interesting to note that in all cases the agree- 
ment falls off markedly when only Lp corrections are 
applied, even in comparison with the results for un- 
corrected data. Unfortunately, it is precisely this cor- 
rection which is most often applied to fiber data. 

It is important to recognize that the functional form 
of the arc correction factor corresponds to a general 
reduction in intensity with increasing angle and layer 
line height analogous to, but significantly different 

from, the effect of a temperature factor. Neglect of 
the correction in a structure analysis not only results 
in abnormally high temperature factors and standard 
deviations, but also affects the final structure. This is 
particularly true in the analysis of macromolecular 
structures displaying packing disorders. 
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An analysis is given of the relation between the reduced cells defined by Niggli and the cells obtained by 
applying Buerger's algorithm. It is shown that in many instances a cell based on the shortest three non- 
coplanar translations must be transformed to obtain the reduced cell. The required transformations for 
all cases have been derived and are presented in this paper. 

Introduction 

In an important work on lattice geometry Niggli (1928) 
has pointed out that any crystal lattice can be re- 
presented by a positive ternary quadratic form. He has 
defined as reduced cell the cell that satisfies the condi- 
tions derived from the reduction theory of quadratic 
forms (Seeber, 1831; Dirichlet, 1850; Eisenstein, 1851). 
Such a cell provides a unique description of the lattice 
and is defined independently of lattice symmetry. In 
addition it must be primitive because one of the pro- 
perties is that it is built on the shortest three non- 
coplanar lattice translations. Niggli has derived geo- 
metrically the reduced forms for all the Bravais lattices 

but he has not given any general method for converting 
an arbitrary primitive cell into the reduced cell. 

The procedure given by Buerger (1957, 1960) and 
extended by Davis (1961) transforms any primitive cell 
into one based on the shortest three non-coplanar 
translations - the Buerger cell. This cell, although 
closely related to Niggli's reduced cell, is not unique in 
many cases. Some of the ambiguities associated with 
the Buerger cell have been discussed by Allmann 
(1968), especially in relation to the standard setting 
used by Donnay, Donnay, Cox, Kennard & King 
(1963) in the determinative listing oftriclinic substances. 

The algorithm proposed by Delaunay (1933) con- 
verts any primitive cell into a standard form involving 
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four vectors that make obtuse angles with one another. 
The end point of the Delaunay transformation - the 
Delaunay cell - is not necessarily based on the shortest 
three non-coplanar translations and is not unique in all 
cases (Delaunay, 1933; Patterson & Love, 1957). 

Thus, at the present time, the only available unambi- 
guous description of a lattice is the one based on the 
reduced cell defined by Niggli. In some cases this cell 
can be derived simply by applying Buerger's algo- 
rithm. Whenever the endpoint of this procedure is not 
Niggli's cell, the Buerger reduction must be completed 
by means of appropriate transformations. These trans- 
formations have been derived and are presented in 
this paper. 

General 

We will represent a primitive cell of lattice parameters 
a, b, c, e,fl, 7, by the matrix 

($11 $22 $ 3 3 ) =  ( a . a  b . b  c . c ) . ( 1 )  
S23 S13 S12 b c a c a b 

In addition we will require that the cell be right- 
handed and that it be given in its normal character 
representation, in which the three interaxial angles are 
either all acute or all obtuse (Az~iroff & Buerger, 1958). 
This insures that the Sij ( iCj)  are all positive (Type I 
cell) or all negative (Type II cell). If one or more of 
the S~j is zero, the cell will be considered to be of Type II. 

The cell represented by matrix (1) is reduced if, and 
only if, the following conditions are satisfied (Niggli, 
1928): 

(A) Positive reduced form, Type I cell, all angles 
< 90 °. Main conditions: 

Sl1~$22~$33; S23~ 1 • <½Sll , ~S22, S13 _ " S12 -< ½S11. (2) 

Special conditions: 

(a) If Sll =S22 then $23 ~ $13 • / 
(b) If S22=S33 S13 ~__ $12. 
(c) If  Sz3=kSz2 S12n~2S13. (3) 
(d) If S13 =½Sll S12_< 2S23. 
(e) If S12M~-½Sll S13-< 2S23. 

(B) Negative reduced form, Type II cell, all angles 
>_ 90 °. Main conditions- 

$11 ~-- S22 ~-~ S33; 1S231 < ½S22; 
IS131 -< ½&l; IS121 -< ½Su. 

([Sz3l + 1S131 + IS121)--- ½(Sll + &2).  

Special conditions" 

(a) I fSH =Szz then IS231---IS131. 
(b) If S22 =$33 [S13l -< ISlzl • 
(c) If  1S231=½822 S12=0.  
(d) If 18131=½Sll S12 = 0  • 
(e) Ifl8121=½811 & 3 = 0 .  
(f)  If  ([Sz31 + 1S131 + 18121) =½(Sll -t- $22) 

then $11-< 21S131 +l&al • 

As shown 
tions define 

(4) 

(5) 

by Buerger (1957, 1960), the main condi- 
a cell based on the shortest three non- 

coplanar translations. Conditions (3a) and (3b) or (5a) 
and (5b) make it possible to label the cell edges uniquely 
when two of them are equal. The other special condi- 
tions define the unique reduced cell in a lattice where 
there is more than one symmetrically independent cell 
based on the shortest three translations. 

The equalities between the scalars shown in the left 
columns of conditions (3) and (5) may occur accident- 
ally or systematically depending on the particular geo- 
metrical properties of a lattice. As an example of an 
ambiguity that occurs systematically, let us consider a 
face-centered cubic lattice defined by the usual cubic 
cell edge a0. If we describe this lattice by means of a 
primitive cell derived from the cubic cell by transforma- 

11 l i2 .  tion 20~2/~0~'/220, we get 

S11 Sll Sll ) 
½S11 ½Six ½Sll , 

with $11 = a~/2. If we now use another primitive cell ob- 
tained by the transformation -t-t0/J-t0/0u 22 /22 / 22, we have 

$11 $11 $11 ) 
-½Sl l  -½Sl l  0 , 

again with Slx=aZo/2. Both primitive cells satisfy the 
main conditions. Note however, that the second cell 
violates condition (5b) and must be rejected, while the 
first cell, which obeys all conditions (3), is the reduced 
cell. An example of ambiguity due to accident is given 
in the next section. 

Determination of the reduced cell 

Let S be the matrix of a primitive cell (in its normal 
representation), which satisfies the main conditions 
appropriate for the cell type, but fails to satisfy one of 
the special conditions. Then the reduction must be 
completed by means of a transformation 

S-+S'  (6) 

where S' is the matrix representing the reduced cell. 
As an example of how this transformation can be 
determined, let us consider a Type I cell of matrix 

( Sll S22 S33 ) , 
S =  ½Sz2 $13 Slz (7) 

such that the S,j satisfy conditions (2). In addition let 
us assume that there are no other special relations be- 
tween the matrix elements. As $23=½S2z then we can 
change the c axis with 

c l = c - b ,  

in which Icll = Icl and the new cell is represented by the 
matrix 

St= [ S'll St22 S'33 ~ ~. { 811 822 S33 
S'z3 S'13 S'lz ] ~ -½Sz2 S13-$12 $12 ) (8) 

If the first cell is based on the shortest three non- 
coplanar translations, so is the second. We have to 
show that of the two cells (7) and (8) only one satisfies 
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condition (3c), i.e. is the reduced cell. Two cases have 
to be taken into consideration: 

(a) $12 < $13. Afortiori we have $12 < 2S13 and cell 
(7) is reduced; cell (8), which is of Type II, is not 
reduced because by definition, $12 ¢-0. 

(b) $12> $13. In this case both  cells are of Type I. 
I t  is possible for two cells of Type I to be based on the 
shortest three translations (Fig. 1). As the initial cell is 
triacute, the projection of a must  be located some- 
where in the shaded area. If, in addition, a projects in 
the cross-hatched area then we have a ACl>90  ° and 
this cell, in normal  representation, is of Type I. Thus 
the two cells are of the same type. Let us now suppose 
$12<2S13. Cell (7) is reduced and cell (8) is not be- 
cause we have:  

$12 - 2S13 = - e < 0 
2S'13 = 2($12 --  S13) = S12 - 

and, in view of S~2'= S12, 
S'12 ~> 2S'13 • 

If $12 > 2Sx3, then cell (7) is not  reduced and cell (8) is 
reduced because 

S 1 2  - -  2S13 = g > 0 
and 

2S'13 = 2($1z- S13) ~-- S12 -t- • ,  
so that  we have S~2 = S'12 < 2S'13 • 

Finally, for $12=2S13, the two cells are indistinguish- 
able and they are represented by the matr ix 

S11 S22 S33 
½S22 ½S~2 S t 2 /  (9) 

In this particular lattice the two cells are related by the 
symmetry introduced by the condit ion $12=2S13 . 
Matrix (9) represents an end-centered monoclinic 
lattice, while matrices (7) and (8) represent a triclinic 
lattice. 

The matr ix of the t ransformat ion from (7) to (8) is 
T00/0T0/0T1. By following a similar procedure all cases 
corresponding to Niggli 's special conditions for cells 
of Type I and II have been derived, and the results are 
presented in Table I. The matrices are given in their 
normal  representat ion and the t ransformat ion from 
cell S to cell S'  is shown in the fourth column. 

Any given cell S in Table 1 is based on the shortest 
three non-coplanar  translations and it is unreduced if 
the scalars are related as indicated in column 3. In this 
case the t ransformat ion will give a cell S'  that  satisfies 
the special condition violated by S. In certain lattices 
more than one t ransformat ion has to be applied before 
the reduced cell is obtained. Matrix S', therefore, must 
be tested against the special conditions appropriate  for 
the cell type and, if necessary, t ransformed again. The 
order in which the t ransformations are applied is ir- 
relevant. 

Discussion 

In addit ion to their theoretical interest, reduced cells 
have two impor tant  applications in crystallography 
(see, for example, Azfiroff & Buerger, 1958): (a) they 

make it possible to determine the Bravais lattice from 
an arbitrary primitive cell of the lattice, and (b) they 
provide a possible method for the classification of 
crystalline substances. 

(a) Determination of the Bravais lattice 
The reduced cells for all the Bravais lattices have 

been derived by Niggli and tables of Niggli 's matrices, 
together with the t ransformat ion matrices from the 
reduced to the conventional cell have been given by 
Buerger (1957) and Az~iroff & Buerger (1958). 

If any primitive reciprocal cell can be derived from 
the X-ray diffraction patterns, then the corresponding 
direct cell, which is also primitive, can be reduced ac- 
cording to the procedure given in the previous sec- 
tions. The Bravais lattice* can then be determined from 
a table of Niggli 's forms. This application of reduced 
cells may save much of the preliminary work normal ly  
needed in crystal-structure analysis. The use of reduced 
cells becomes particularly useful when crystals are 
grown and studied under special conditions, such as 
high pressure, high or low temperature,  in which it is 
difficult or impossible to determine the lattice symme- 
try by conventional means. 

(b) Classification of crystalline substances 
The present determinative listing of crystalline sub- 

stances is made on the basis of cell dimensions within 
each crystal system. The choice of  a conventional cell 

* We would like to emphasize that the lattice symmetry 
determined by means of reduced cells is purely metric and it 
may be the same as or higher than the true symmetry of the 
lattice of the crystal structure. 

CI 

Fig. 1. Transformation of axes in a cell of Type I in which 
$23=½S22. The two cells formed by a, b, and c and by 
a, b, and cl are both based on the shortest three translations 
and are of the same type if a projects in the cross-hatched 
area and of different type if a proiects in the hatched area. 
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Table i.  Transformations for determining the reduced cell from an unreduced cell based on the shortest three 
translations of  the lattice 

Type Relations 
of cell Matrix of cell between 

S* S scalars 
{Sll $11 $33~ 

I or II ~S23 S~3 Sx2] la. el < lb. el 
(Sll S22 S22~ 

I or II ~$23 S13 S12] [a. bl < [a. el 
{ all S22 S33"~ 

I Ik1822 813 512] 2a. c < a .  b 
(all S22 533~ 

1 \S23 ½S11 S12] 2b. c < a .  b 
[S11 S22 S33~ 

I ~S23 S13 ½511] 2b. c < a .  c 
Stt S22 S33'~ 

II --½S22 S13 S12] a.  b~O 
{all S22 S33'~ 

II \$23 -½Sll  $12] a .  b~O 
{all S22 533~ 

II ~$23 $13 -½Sill  a . c # 0  
( Sz{,.1 $22 $33~ 

II $13 $12} 21a. e l + l a ,  b l < a .  a 
where X=½(S11+$22-2[S131-21S121) Y=1S121+1S23[-$22 

Transformation Type 
matrix Matrix of cell of cell 
S t o S '  S' S' 

{all Sll S33] 
010/]'00/OOT ~SI 3 523 $12] I or II 

(all 522 $22'~ 
T00/00T/0T0 ~S23 $12 Sja] I or II 

[ all 522 S33~ 
T00/0T0/0T1 \&$22 S12 -- S13 $12] I 

{ all 522 S33'~ 
T00/0T0/101 ~512-- S13 ½511 $12] I 

{ all 522 S33~ 
i00/TIO/00T \$13 - $23 $13 ½Sa 1] I 

( all $22 S33~ 
100/0r0/0T]" ~½522 IS131+ 1S12[ IS121] I 

all 522 S33 
T00/010/ToT 1S231+1S:21 ½Sll 1S121] I 

all 522 S33'~ 
100/]q-0/001 1S23[ + IS131 15131 ½Sll] I 

(S~/1 522 S33~ 
i00/oT0/111 Z $12] I I 

Z =  18121+ [5131-Sl: 

* All cells given in normal representation. 

dictated by lattice symmetry is possible in all crystal 
systems except triclinic and monoclinic.  Triclinic sub- 
stances have been listed in terms of a cell obtained 
either with the Delaunay reduction (Donnay,  Nowacki  
& Donnay,  1954) or with the Buerger reduction 
(Donnay et al., 1963). In both cases it is possible to 
have ambiguous  results. For  example,  in 50 triclinic 
reductions performed with Buerger's algorithm, we 
found five ambiguous cases. For  this reason we re- 
commend  the use of Niggli 's  reduced cell which is 
uniquely defined in all cases. 

The authors wish to thank  Professor J . D . H . D o n -  
nay for many  helpful discussions and for reading the 
manuscript .  
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